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Abstract-Developing  production-quality software as part of 
a scientific research program presents unique  challenges. 
Some of the  techniques  for  managing  requirements  in  this 
context  which  have  evolved over the  last  three decades at 
the Jet Propulsion Laboratory are discussed. The  software 
development effort in support of the Tropospheric Emission 
Spectrometer (TES) project is  presented as an  example  of 
the  application  of  these methods. 

In certain  respects  the  methods discussed  appear to deviate 
from  commonly  accepted  practice.  In an effort to explain  the 
success of these  methods,  some  novel  information from the 
field of cognitive science is explored. We discuss  our 
assumptions  about  the  underlying  model  of  scientific 
process. The tension  between  the dualistic view  of  the  world 
assumed by scientists, and  the  nondualistic  nature of our 
solutions to the  problems of software development  is also 
discussed. We conclude with a discussion of our  experience 
relative  to current research  into social methods of 
requirements engineering. 

We find  that scientists are a unique  type of customer,  with 
unique  needs  from the software development process  itself, 
and  not just the  end  product as many  methodologies  assume. 
A social-based approach to development has  proven to be 
the  most  efficient  means of mitigating  the difficulties posed 
by language, educational and cultural barriers. 
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1. INTRODUCTION 

Since the  1960’s  NASA’s Jet Propulsion Laboratory (JPL) 
has  been  involved  in developing  software systems  to  support 
the  analysis of data returned by its deep  space and  Earth- 
orbiting  missions. Operated since inception by the  California 
Institute of Technology,  a  semi-academic, informal 
atmosphere has been a  hallmark of JPL culture. While many 
of the  Laboratory’s successes have  been  attributed to this 
culture, Laboratory  staff  have long recognized  the  need  for 
discipline in order to ensure mission success. 

However, arriving at the right balance of formality  vs. 
unrestrained  creativity  has  often proven to be  an  elusive 
goal.  Though  often  achieved by individual projects, this 
balance has  yet  to  be  achieved at an institutional  level. An 
effort in  the  mid-1980’s  to  codify software practice  at  the 
Laboratory  resulted  in the so-called D-4000 standard [14], 
roughly  based  on  the  military  2167A standard. 

The  D-4000  standard represented  the  best  practices of  the 
time,  but  never  found complete acceptance. Despite  the 
authors’  best efforts to make  the  standard free of 
methodological  assumptions, it was  nevertheless  grounded 
in a mindset of functional decomposition, the  waterfall  life 
cycle,  and  the  needs  of large software projects. As a result, 
the  standard  proved difficult to apply, especially  as  the 
software  engineering world  evolved towards object-oriented 
methods,  rapid prototyping, and evolutionary development. 
The individual needs  of different application domains  also 
presented difficulties for the standard. Over time, groups 
within the Laboratory responsible for flight software, ground 
support software,  mission control systems,  telemetry 
systems,  and science software systems  had  each  evolved 
their  own  unique solutions. Although  the  standard’s  authors 
were familiar with these solutions, the  final  result was 
widely  viewed as non-responsive to the  needs of particular 
domains.  In a sense,  the standard was a victim of its own 
success. The authors  had done such a good job at  abstracting 
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the  essentials of the software  process  from the particular 
instances  they  were  familiar  with,  that  the  end result was 
unrecognizable  to  many practitioners. 

Despite  its  drawbacks,  the D-4000 standard  has  had a 
significant  impact  on  the way software  developers do their 
job at JPL. Within  the  Image Processing and  Analysis 
Section, a tailored form of the standard was applied to the 
development of the  Multimission  Image  Processing  System, 
and later, to the science software projects supporting the 
Earth  Observing System (EOS)  instrument projects at JPL. 
The Tropospheric Emission Spectrometer (TES) project is 
the  most  recent of the latter class of software project within 
the section. 

While  the  D-4000 standard  provided a formal  framework  for 
software  development,  the local methods  of developing 
software  that had evolved  over the previous  twenty  years 
prior  to  D-4000  remained  in  use. These methods  have  never 
been  formally captured, and  if  they are written  down at all, 
are  scattered across a broad  range of project internal 
documentation.  Probably  the  most  influential  methods  used 
were  never  written  down at all, forming  an  important, 
though tacit body  of  knowledge about how to succeed at 
science software projects. This  paper is an  attempt to 
describe some of the  previously tacit knowledge  embedded 
in the  local corporate culture. 

The  immediate sources of  many  of the  methods  and 
approaches  used by the  TES  team  were earlier EOS, and 
EOS-related  Earth  remote sensing projects. These include 
the  Airborne  VisibleAnfrared  Imaging  Spectrometer 
(AVIRIS),  Atmospheric Emission  Spectrometer (AES), 
Multiangle  Imaging Spectroradiometer (MISR),  Advanced 
Spaceborne Thermal  Emission Spectrometer (ASTER),  and 
the  Atmospheric Infrared Sounder (AIRS). These projects 
represent a distinct thread of methodological  development 
within  the Section, largely  under  the influence of Graham 
Bothwell, who  was responsible for managing  all of them 
except  AIRS  for at least part of the project lifetime. The 
general  approach to science software discussed  here is 
deeply  indebted to Graham’s insights and  guidance  over the 
past decade. 

2. CHALLENGES POSED BY SCIENCE  PROJECTS 

TES-Specific Challenges 

The TES  project  is a somewhat extreme  example of science 
software  development projects at JPL. With  the possible 
exception of the MISR project, TES stands out  as  unique  in 
the  difficulties  posed by the  instrument  system  and  the 
science. TES  is a Fourier  transform  spectrometer designed 
to  measure  high  resolution  infrared spectra from  low  earth 
orbit.  It  is an unprecedented  measurement  system  with its 
unique  combination of spectral resolution, signal to noise, 
and  ability  to operate in a nadir  and  limb  viewing  mode. The 
purpose of the  mission  is to provide a three-dimensional 
map  of tropospheric  ozone  and its chemical precursors, plus 

temperature,  water vapor and surface parameters. These data 
are to be  used by global climate researchers to  validate 
models of the  Earth’s climate system. 

The prototypical JPL instrument  is an imaging  system.  This 
is especially true of the  systems supported within  the  Image 
Processing Section. One  of  the challenges posed by TES  is 
the  unfamiliar  nature of the  measurement.  As a spectrometer 
with  only  sixteen spatial channels but  over 5,000 spectral 
channels, the data do not  lend  themselves  easily  to  visual 
interpretation. As  an interferometer, the data require 
complex  mathematical  algorithms to convert  raw  bits  into 
physical units. These  methods, too, were  new  to  the  software 
team. 

Processing  of  the  measured spectra into vertical  species 
profiles  involves a highly complex  algorithm that  challenges 
the software  development team’s  mathematical  and  physical 
reasoning  skills. The nature  of  the processing problem  is 
such  that it is impossible to calculate a deterministically 
correct solution. One is in  the position of having  to  accept 
what  is  best characterized as the  most likely solution. The 
techniques  for doing so are highly sophisticated, 
representing  the cutting edge of optimization  techniques. 
The non-deterministic nature of the algorithm  lends an 
uncertainty to the process that  some  developers  find 
discomfiting. 

Most  importantly,  the science  algorithms for processing  the 
data were  largely  undefined  at  the start of the project. 
Developing  the algorithms has  required a multi-year  effort 
on  the part of a geographically distributed science  team.  The 
algorithm development  process is still ongoing,  and  is 
expected to continue well after launch, currently  scheduled 
for  December 2002. The  requirements management  aspect 
of the software  development is thus intimately  coupled  to a 
scientific research program. In a very  real  sense, our 
requirements specifications job is  synonymous  with  the 
algorithm  research program. 

General  Challenges of Science  Software  Projects 

We  present below  what  must  be  regarded as a partial 
discussion of the challenges posed by science software 
development projects in general. We  focus on  developing a 
fundamental  understanding  based  on  the  epistemological 
characteristics of  the scientific enterprise. Certain  factors 
relating to  the  basic  needs  of scientists are also discussed. 

Nomology-In  what  will  become a recurring theme of this 
paper, we begin by observing that  there  are  fundamental 
differences between  the development of instrumentation, 
scientific theories, and software. Our first observation  is  that 
these activities do not share a common  nomology  (rules of 
reasoning). This fact is a source of  difficulty  in  developing 
requirements for science software projects. 

Instrumentation  always obeys the laws of physics.  When 
reasoning about instruments,  the  laws of physics  are  clearly 



the appropriate rules to apply. As  an activity directed 
towards correctly understanding and interpreting physical 
phenomena, science is clearly situated in the cognitive realm 
of human functioning. But  what  nomology applies here? 

Scientists will often assert that the same rules of physics (or 
whatever specialty the project involves) apply to scientific 
activities as well. However, this is only part of the story. 
Physical reasoning plays a primary role, but mathematical 
thought, deductive and inductive logic apply, as do a host of 
progressively less ”scientific” factors, including the 
preconceptions of each scientist as to the types of potential 
solutions they  will seek, and more personal prejudices 
unrelated  to science per se. At this point, the question of 
what rules of reasoning apply to the conduct of scientific 
investigations becomes confounded with the question of 
what rules apply to human behavior in general. This 
question is the province of cognitive science. 

The entire project of cognitive science may be  viewed as an 
effort to  uncover  the  nomology of the mental world. In the 
half-century since it emerged as a recognizable research 
program’, various avenues in linguistics, philosophy, 
anthropology  and neuroscience have been explored. In spite 
of the  many fascinating theories that have been developed 
about  human cognition, there appears to  be no nomology 
equal in stature to (for example) physics, to provide a 
suitable foundation for understanding cognitive phenomena. 

How we interpret the failure of this pursuit has important 
implications for how we approach science software 
problems. If  we interpret the situation in the modernist 
tradition, and  view it as merely a matter of time before the 
rules are uncovered  and explained, then we are likely to 
misinterpret some (but not all) of the difficulties 
encountered in science software projects. In particular, 
difficulties arising out of the preliminary and contingent 
nature of scientific knowledge, as discussed in greater detail 
later, may  be misunderstood as difficulties that may be 
addressed  simply by working harder to  clarify understanding 
or  answer questions. The situation is often not that simple. 

On the  other hand, if  we adopt a more post-modern view  we 
risk a profound conflict with the foundation of science. 
Descartes, who  may  be regarded as the founder of the 
modernist  faith in an objective, external reality regarded it as 
the scandal of philosophy that no one had  yet successfully 
refuted  the  view  that  nothing exists outside one’s subjective 
reality. Heidegger3 [ 1 11 inverts this formulation, saying, “the 
‘scandal of philosophy’ is not that this proof  has  yet to be 
given,  but  that such proofs  are  expected  and  attempted 
again and  again.” Although Heidegger’s challenge does not 
appear to  threaten  in  any way the ability of science to 
continue to make strides in understanding the world, it 
strikes closer to  home  with software engineering, a field that 

finds itself hard-pressed to ground its conclusions in  the 
“real world“. The Heideggerian challenge implies  that  the 
rules we seek may  be inherently undiscoverable. 

The inability of software engineers to ground  the  wisdom of 
their trade in something equivalent to the laws of physics 
hampers their ability to communicate with a science team. 
The problem boils down to the inability to provide a 
convincing justification for software engineering methods. 
Orthodox scientific training leads scientists to expect and 
accept as true only statements based on “scientific” 
principles and evidence. Although considerable work  has 
been done to establish the value of practices such as peer 
reviews, diagramming, and documentation, the studies 
which support them appear too anecdotal to  be  accepted 
uncritically by the scientific mind,  and their interpretation 
lacks the supporting body of theory that would enable one to 
trace conclusions back to first principles. Lacking such a 
foundation, it can be difficult to communicate to a science 
team the value of requirements engineering. 

It is therefore especially important to  avoid justifying the 
effort devoted to requirements on the basis of the software 
engineering profession itself. We have found  it imperative 
that the development team formulate requirements issues 
explicitly in  terms of the scientific objectives of the science 
team. 

Methodology-A scientist, frustrated with  the inscrutable 
and slightly suspect methodology of an engineering team, 
might  naively insist that the proper way  of developing 
science software is the way they themselves have  always 
done so. Typically, this means one or two people writing a 
code for their own use, or for the use of their immediate 
work group. These codes may grow and evolve as  an 
integral part of a scientist’s research, often over decades. 

For a scientist accustomed to working  with computers in  this 
mode, it can be  very difficult to adjust to  any other way  of 
working. Confronted with the prospect of being deprived of 
their former intimacy  with the inner workings of a program, 
and their total control over its features, a scientist may resist 
the efforts of a software engineer to apply their own methods 
to the software development. 

This resistance may be explicit or implicit. In some  cases, 
application of change management techniques (e.g., [ 161) 
may be effective. However, we have found it generally 
impossible, and counterproductive, to try  to convince 
scientists used to working directly on code to give it up 
entirely. Programming is often inextricably embedded in a 
scientist’s  working methods. We favor the development of 
team structures that provide programming support to 
scientists who require it, and an organizational bridge to join 
these activities to the more formal software development 
activities (cf our discussion of prototyping below). 

2 See [ 151 for a general  overview of the  history of cognitive science. A scientist who has successfully written many software 
As quoted  in [4]. programs in  their career is  likely  never  to  have  written a 



requirement, as the issue of communicating them  rarely 
arose. If it did, was  most likely with a colleague or student, 
who could  reasonably  be expected to share much  of their 
understanding of the domain. Thus, with some justification, 
scientists will often challenge the need to write 
requirements. 

Though it is possible to mandate documentation of 
requirements programmatically, this approach is not  likely to 
elicit the kind  of cooperation necessary  to produce a quality 
requirements specification. To address this issue we again 
advocate the development of effective team structures that 
facilitate requirements development with a minimum of 
intrusion on the science team’s normal activities. 

Key to success in this area is the presence on the team of 
individuals who have sufficient training in the scientific 
domain  to  act as bridges between the science team  and the 
more computer science-oriented software engineers. Given 
the highly  technical nature of most science software 
requirements, we have found that Master’s  and doctoral level 
degrees in scientific disciplines are often required. A person 
in this  type of position must  be sufficiently interested in the 
science that  they devote the time and energy needed to 
understand  it,  but  not so interested that  they cannot 
disengage themselves from the science to focus on software- 
specific matters. These are the individuals who are best 
capable of eliciting tacit requirements, and correctly 
interpreting explicitly given requirements. As we shall 
discuss more  fully later, we find the issue of the 
interpretation of requirements to be fundamental to science 
software development. 

How  many  such “bridges“ are needed  to  be successful? It is 
difficult to provide an exact formula. A scientist-bridge ratio 
of between 1: 1 to 2: 1 seems appropriate. For example, the 
TES project currently has four full-time science algorithm 
developers on  the science team resident at JPL, and the 
equivalent of two to three full-time algorithm developers off 
site. We have three people who serve in bridge roles at JPL, 
and  one  off site. We can see a clear need for at least one 
additional person  in a bridge position. 

Communications-One  must  pay special attention to the 
communications skills of the software engineering staff. 
Although  staffing  may  be regarded as a project management 
issue rather than a requirements management issue, the 
importance of communications skills cannot be overlooked 
in a discussion of science software requirements 
engineering, as  the cultural and vocabulary barriers are often 
substantial. 

A scientist able to communicate effectively with other 
scientists may  be less effective when confronted by non- 
scientists. Weakness in communications skills may  be 
masked  in scientist-scientist interactions by the shared 
language of the discipline, and a willingness to tolerate those 
weaknesses  on the basis of mutual regard. A similar 

situation obtains with regard to engineers. Training in  both 
disciplines places little emphasis on interpersonal skills. 
Indeed, it is the attitude of many scientists and engineers that 
these skills are simply  not important as long as the quality of 
their technical work is good. 

Since one typically cannot influence the make-up of a 
science team, it is essential that care be  taken when selecting 
the staff  who  will be expected to carry out the  requirements 
engineering tasks. 

Two Cultures, One Shared Purpose-Establishing a shared 
purpose in a heterogeneous scientists/engineering team  is 
more difficult than  in a homogeneous case. At least part of 
the problem stems from the type of goals each group is 
culturally predisposed to establish. Science may  be 
characterized as an activity that is larger than  any  single 
participant. Its scope is generally taken  to  span centuries and 
nations,  and its goals explicitly formulated in  terms of  what 
is currently beyond reach. Engineering groups, on  the  other 
hand, typically have a more near-term, immediate focus. 

Physicist and  writer C.P. Snow described the gulf separating 
scientific and engineering culture 40 years ago [ 161 as 
follows: 

Pure scientists and engineers often totally 
misunderstand each other. Their behavior tends to be 
very different: engineers have  to live in a very 
organised community, and however odd they are 
underneath  they manage to present a disciplined face 
to the world. Not so pure scientists. [Scientists] have 
statistically a higher proportion in politics left of 
centre than  any other profession: not so engineers, 
who are conservative almost to a man. 

Snow was critical of the attitudes of contemporary scientists. 
He lamented that, “ Pure scientists have by and large been 
dim-witted about engineers and applied science. They 
couldn’t get interested. They wouldn’t recognise that many 
of the problems [of engineering] were as intellectually 
exacting as pure problems, and that many  of the solutions 
were as satisfying and beautiful.” Snow went further to say 
that, “We prided ourselves that the science we were doing 
could not, in  any conceivable circumstances, have any 
practical use. The more firmly one could make  that claim, 
the more superior one felt.” 

Although  much  has changed, especially in  terms of the 
attitude of scientists towards the relevance of their work  to 
society at large, since Snow wrote those words, the 
polarization between science and engineering culture 
remains a significant force today. It is also important to 
recognize that  the situation is not one-sided. Engineering 
culture has  its  own ingrained attitudes that can make  it 
difficult for them to appreciate the needs of scientific 
research. One must also be cautious about  applying 
generalizations to specific individuals. Nevertheless, cultural 
differences pose one of the largest barriers to effective 



science teadengineering team partnerships. Mitigating 
those  differences requires a constant effort throughout the 
project life cycle. 

Given  these differences, how does  one  formulate a shared 
vision  that  both sides will  buy into? One approach we have 
had success  is  to  seek  an expression of the  team’s objectives 
that  lends  itself to a satisfactory interpretation from either 
perspective. For example, on  the TES project, our 
overarching  goal  is  to deliver a global data set of vertical 
species profiles, plus temperature and surface parameters, of 
ozone  and it precursors. This formulation  is preferable over 
one  that  emphasizes science, such as “to do  ozone research”, 
or  software,  such as “to develop and deliver the profile 
retrieval software”. 

The value of culturally  neutral expressions  extends to  the 
development of requirements.  Wherever  possible, science 
software  requirements  should be written in such a way  as to 
preserve  their scientific intent. A requirement  which  has 
been  formalized to the  point  where  the  scientific context is 
no longer  evident  will be  incomprehensible to a scientist, 
and  will  likely convince them  that  the process is  either 
irrelevant, or even  harmful to their goals. It will also be a 
substantial  barrier to verification4, as the scientist is unlikely 
to  be  willing to verify a requirement that  they  perceive as 
irrelevant. 

3. SOME SHORTCOMINGS OF EXISTING METHODS 

The discussion  to follow must be set against a background 
of appreciation  for  the  value of traditional software 
engineering  techniques.  Even the waterfall  model,  maligned 
as is may be  in  the literature and  in practice, contains an 
essential  kernel of truth about the  basic order of events  in 
software  development. The  TES team’s approach to 
documentation  and standards for  reviews are based  on  the 
D-4000 standard, tailored  to  meet project needs. We 
challenge  here  the  value of certain  techniques or 
assumptions specifically in the context of science software 
development. We begin  with a criticism of the way in  which 
some  problems  in requirements  engineering are posed. 

Posing the Problem for Solution 

Dorfman  and  Thayer [ l]  provide a comprehensive  list of 
requirements  management  issues  that appear to  us  both 
comprehensive in scope, and  typical  in  their expression. An 
abbreviated  version of their  list  is as follows: 

1) Inability of engineers  to  write software specifications. 

2) Management desire to emphasize  code & test at 
expense of requirements. 

3) Lack of customer cooperation in  requirements 
verification. 

The  subject of customer  involvement  in  requirements  verification is 
discussed in more  detail below. 

Lack of customer  understanding  of  purpose of 
requirements. 

Tool/methodology selection. 

Effective lack of knowledge  that  system  requirements 
are essential  to software requirements. 

Lack of  training  in requirements allocation from system 
to software. 

Habit of management  in placing  people with  little 
software  experience in charge of large  software 
projects. 

This list should be familiar to  all experienced software 
engineers. Different  writers  will express it in  different forms, 
with differing emphases, but  the  message  is  fairly constant. 
Science  software projects are the same as  all others insofar 
as they share in these issues to one  degree or  another. 
Although we discuss  Dorfman  and  Thayer’s  formulation 
here, we view it as an example of the way  in  which software 
development  issues are commonly framed. No specific 
criticism of Dorfman  and Thayer is intended. 

Our difficulty  is  with the language in  which  the  issues  are 
expressed, especially items 3 and 4. By identifying  the 
customer’s “lack of cooperation” or “lack of understanding” 
as  an issue, the  problem  is  posed  in  terms of a supposedly 
correctable fault in the customer, and  suggests  that  solutions 
lie  in  the area of educating the customer, or providing  them 
with  encouragement or incentives to become  more  involved. 

Unmet Needs-We propose to reformulate the  problem in 
terms of  unmet  needs.  In the case of a scientist customer, we 
believe  those  needs are profound  and  may  even  have a 
physiological  basis.  If our physiological hypothesis  is 
correct, failure to meet those needs  may  incur resistance that 
cannot be  reasonably overcome or redirected  for  the 
convenience of software developers. 

We must emphasize at the outset that  the  discussion to 
follow  is  not  intended to  be scientifically rigorous. Our 
intent is to provoke discussion of how  physiological  aspects 
of the  human  organism  may bear upon  the  behavior of 
people involved  in the software  development process,  and 
how that  bearing  might influence our  formulation of 
software engineering problems. 

As background, we present now  some  information  on how 
the  human  brain  is  thought to function. Ornstein  and  Sobel 
[9] present  an  intriguing account of  the  effects of over  and 
understimulation  on  the brain. Studies of  brain  development 
in  rats5  have  shown  that  stimulation directly affects  the 
growth  of  neurons. Conversely, understimulation  results in 
neural atrophy. The ability to induce growth extends into  old 

See discussion of the work of Marion  Diamond in [9], p. 222. 



age, where  as little as a week of appropriate stimulus is 
needed  to  produce measurable changes. 

The brain regulates the amount of information flow it 
receives, similar to the homeostatic functions that regulate 
blood pressure and  body temperature. “Compared with one 
less experienced or developed, the more experienced brain 
does receive less sensory information because we have 
learned  to extract out just those bits of information we 
need.. . At each step we need less and less, we  need attempt 
less and less. As we age we get more and more needful of 
strong stimuli.6” 

The profound impact of mental understimulation on the 
overall health of the individual is dramatically illustrated by 
the results of studies that suggest a link to cancer’. “When 
the  information deficit reaches some critical value, the brain 
sends a nonspecific signal . . . indicating the need for novelty 
or information; carcinogenesis is the body’s mode of 
providing ‘information-novelty’ which is subsequently fed 
back to the  brain  and  which attempts to  rectify the relative 
information  underload signaled by the brain.”[ 101 

Our  thesis  here  is simply this: that the information  needs of a 
scientist (or any other customer type with a strongly 
intellectual component to their profession) are deeply rooted 
in their  physiology. We do not suggest that it is possible for 
a software  team  to endanger the health of a scientist merely 
because  the latter finds software boring. A bored scientist 
will disregard the software process and  return to their work 
long before any real health hazard could materialize. 

To illustrate the importance of our physiological hypothesis, 
the  following  analogy  may  be  helpful. Asking a scientist to 
leave the interesting and challenging world of their research 
for a day is akin to asking them to skip lunch. They may 
experience some discomfort, but if the perceived gains are 
sufficient, the sacrifice may be acceptable. Failing to meet 
their  information  needs  over the long term, however, is  akin 
to asking  them  to fast for a year. 

Scientists have chosen a profession that meets their 
prodigious need for intellectual stimulation, and their chosen 
field is probably the most important means of fulfilling this 
need. It is our experience that boredom is a frequent 
complaint of scientists expected to participate in software 
development activities. These complaints disappear when 
the focus of the activity is sufficiently close to their own 
concerns that  they can participate as scientists rather than as 
conscripts. 

Our discussion of the physiology of information needs adds 
another dimension to the problem of how to successfully 
engage a scientist customer in the requirements engineering 
process. As is commonly understood in the software 

Omstein  and  Sobel [9], p. 214-215. 
’ The  quote  which follows is  excerpted  from  Omstein  and  Sobel [9], p. 
226. 

engineering community, failure to understand requirements 
adequately is  likely  to lead to project failure, or  at  the  very 
least to cost and schedule overruns, and  to a disgruntled 
customer unlikely to provide your organization with  repeat 
business. 

Writing Specifications 

Considerable work has been done on defining the attributes 
of good requirements. Typically, the list of desiderata 
includes such features as completeness, correctness, and 
absence of ambiguity. Despite the fact that recent 
methodologies emphasizing iterative development and  rapid 
prototyping have challenged the practicality of achieving 
these qualities in  an absolute sense, especially at  the 
beginning of a project, they have not  been  abandoned 
outright. As discussed below, we find the nature of science 
projects introduces new complications into the task of 
writing  “good” specifications. 

The root cause of the trouble lies in  the fact that  software 
plays  an intimate role in the process of acquiring knowledge. 
In  this capacity a science software project is unique  among 
software projects in general. How one approaches the  task of 
software development in this context is highly dependent on 
one’s underlying model of the scientific process. Equally 
critical is how one resolves the ambiguities intrinsic to the 
process. We begin  with a discussion of our assumed  model 
of the scientific process, and proceed to explore the 
complications arise as a result of weaknesses in  those 
assumptions. 

Model of the Scientific Process-An inadequate model of 
the scientific process can lead to unrealistic expectations of 
the process, and of the requirements engineering activities 
which depend on that process. Despite its popularity, we 
find  Kuhn’s  notion  of paradigm shifts [7] an  unsatisfactory 
basis for understanding the dynamics of science software 
projects. In our experience Kuhn’s model does not provide 
an accurate description of the way science is carried out  on a 
day-to-day basis’, and it fails to provide a basis for a rational 
understanding of the scientific process. 

The model  assumed  in the present work  is  based on Lakatos’ 
[3] notion of a research program. A research program is 
more  than a specific plan for conducting research. It 
encompasses a broad range of assumptions and attitudes 
concerning which questions should be asked, how  they 
should be formulated, the form of solution one should seek, 
the methods by which those solutions are developed, and  the 
ultimate goals  and value of science. Earth system science is 
an example of a research program. 

At the level of  how scientists carry out their work day-to- 
day, we adopt as a model what Lakatos calls sophisticated 

* L. Pierce  Williams [2] criticized Kuhn  and  others  for  attempting  to 
construct a philosophy of science upon  the  basis of a history of science that 
was in  itself  insufficient  to  support  such a project. 



methodological falsificationism. In  this model, a scientific 
theory T is  falsified if and  only if another theory T‘ has  been 
proposed with the following characteristics: (1) T‘ has 
excess empirical content over  T: that is, it predicts novel 
facts, improbable in the light of, or even forbidden by T; (2) 
T’ explains the previous success of T, that is, all of the 
unrefuted  content of T is contained (within the limits of 
observational error) in the content of T’; and (3) some of the 
excess content of T’ is corroborated. 

Sophisticated falsificationism attempts to moderate the 
extremism of naive falsificationism by establishing the 
conditions under  which a theory could be legitimately saved 
from  potentially falsifying observations by the addition of 
auxiliary  hypotheses or theories. According to sophisticated 
falsification no experiment, experimental report, observation 
statement  or well-corroborated low-level  falsifying 
hypothesis alone can lead to falsification. There is no 
falsification before the emergence of a better theory. 

This latter point is important, as it sheds light on the 
methodological reasons why science software development 
can  be  as complex as it often is. It is usually  necessary for 
the scientist to  maintain several competing theories 
simultaneously,  and  to  modify them continually in light of 
new observations or related theoretical developments. 
Scientific theories typically constitute the most important 
(from the customer’s point of view) component of a 
requirement specification. 

Dualism-A dualistic relationship between the mind  and  an 
objectively knowable  world is implicit in  both  Kuhn’s  and 
Lakatos’ understanding of science. For present purposes, we 
may take the “mind” to represent the scientist who attempts 
to understand the physical world. In this model, the mind is 
separate from, and independent of, the physical world. 
Another  common assumption of the dualistic viewpoint is 
that  knowledge consists of internal representations of the 
world, representations that are evaluated according to the 
degree to  which  they correspond with the observed state of 
affairs  in  the  world. 

It  is ironic that perhaps the strongest challenge to the 
representational theory of knowledge comes from science 
itself. A classic work  on  vision in frogs by Humberto 
Maturana, et al, [5] showed  that certain nerve fibers in the 
frog’s retina were able to detect patterns such as that a fly 
might  make,  and  that triggering these nerve fibers lead to 
behavior appropriate to catching the fly in that spot. In 
Winograd and Flores’ [4] discussion of this work,  they 
conclude that, “the frog with optic fibers responding to small 
moving dark spots does not have a representation’ of  flies.” 
If Maturana’s finding is correct, that it is structural patterns 
in neurons  rather  than a literal representation of objects in 
the  world  that underlie the mind’s activity, then  what exactly 
are we doing when we engage in  model building? In the 

structuralist view  of mental functioning, we are modifying 
connections between neurons, but nowhere do we ever 
create something that could be construed as a model. 

If  we regard mental models as an emergent property of the 
neural structure of the brain, we have removed it one step 
from the so-called “objective” world, which we suppose it 
represents. What now  may  be  said  of the connection 
between our models and “reality”? The post-modern 
tradition in philosophy has raised this issue in  many 
different forms. The essential issues (with respect to the 
present subject) that emerge in their work concern the 
effects of previous understanding. 

The Hermeneutic Circle and Measurement Systems 

We designate the total system of instrumentation, processing 
software and supporting physical theory a measurement 
system. A measurement system is neither  completely 
physical  nor completely cognitive in nature. The 
hermeneutic circle is a concept drawn from textual analysis. 
Originally applied to the problem of interpreting texts, the 
concept has since been expanded and applied elsewhere. We 
apply it here to the problem of acquiring and  understanding 
scientific data (text) about the physical world. 

Simply put, the hermeneutic circle says that we cannot 
understand a text except in terms of other texts with  which 
we are already familiar. It is understood as a barrier to 
understanding an author’s “real” intent versus  applying 
one’s own interpretation based on one’s own prejudice as 
the “meaning” of the  text. 

A scientist presupposes that “nature” is the “author” of the 
text (data) he or she is attempting to understand. In our 
version of the hermeneutic circle, the scientist’s status as 
“reader” of this text is ambiguous. As described in greater 
detail below, the scientist plays a role in  the authorship of 
the data, and thus is in danger of reading as nature’s hand 
what  they themselves have written. This is presented  as a 
problem for requirements engineering, as it  affects  their 
principle source of requirements. 

Instrumentation and Preunderstanding-We begin by 
considering the status of physical instrumentation. 
Simplistically, we may regard the objective world to be 
synonymous  with the physical world, and we  may regard 
instrumentation systems as part of that world,  with  the 
cognitive processes associated with  theory building and 
software located in the mental or cognitive realm. 

Though simplistic, this basic distinction provides valuable 
insight into the software development process. As  an aside, 
we believe this distinction is basic to all  software 
development projects, and  helps explain why methodologies 
based on experience with hardware system development 
have proven inadequate for software projects. 

Emphasis  in the original text, Winograd  and Flores [4], p. 46. 



In response to the post-modern challenge to dualism, we 
modify  this simplistic view  by recognizing a continuum 
between  physical instrumentation and interpretive activities. 
By virtue of the interaction of thought (in the form of 
observational theories, as defined below) and physical 
reality, the  line  between the two  may become confounded. 

Since Galileo, science has relied upon instrumentation to 
extend  the  reach of human senses. Instrumentation is an 
artifact of the  physical  world.  As such, it must  obey the laws 
of physics. In fact, we  may  say that  physical instrumentation 
obeys the laws of physics infallibly, regardless of whether or 
not the  instrument  is correctly designed or constructed, or 
makes  useful measurements at all. But instruments are 
designed by human beings-scientists-and those designs 
are based  upon prior physical theory regarding the physical 
world. 

The theories used  in the construction of instruments belong 
to a class of theories Lakatos called observational theories 
[4]. Observational theories are physical theories that are 
regarded by practicing scientists as sufficiently well  proven 
to  be regarded as unproblematic. They are distinguished 
from explanatory theories, which are theories intended to 
explain  some observable phenomenon. Experiments are 
intended to test explanatory theories, and are carried out  on 
the  basis of observational theories. 

In a science software project, it is important to recognize 
first, that a theory may function as an observational theory  in 
one context, and  as explanatory in another. Observational 
theories must  always start out as explanatory theories. New 
discoveries may appear to falsify an observational theory, 
and cause its  assumed explanatory power to be called into 
question. Although  no practicing scientist thinks of what 
they do in  exactly those terms, in practice they are keenly 
aware of the possibility of this occurring. 

On the TES project, an example of an observational theory 
would  be  the  body  of  theory underlying the algorithm we 
call the “forward  model”. This algorithm describes how a 
mathematical representation of an absorptiodemission 
spectrum can  be constructed based on knowledge of the 
atmospheric state, the laws  of electromagnetic radiation, and 
certain quantum mechanical properties of the molecules 
present  in  the atmosphere. Prior to its being accepted as a 
satisfactory  basis  for  use in analyzing a measurement, the 
theory  had  prove  its ability to explain real spectra. 

As is implied by our model of falsificationism, no such 
proof  is ever completely conclusive. Indeed, there are 
inevitably approximations made in solving complex 
equations and an absence of critical measurements to 
completely  validate the theory. On TES, we regard the 
forward  model  theory as fairly well established, but there 
remain open questions about its ability to model aerosols, 
and scattering, and the underlying laboratory measurements 
used  in the calculation are known to be incomplete and  in 

some cases inaccurate. Where laboratory data are simply  too 
poor, theoretical calculations provide the needed parameters. 
These factors condition our view  of the correctness and 
completeness of our forward model requirements. Since the 
software requirements express a physical theory, they are 
subject to the same vicissitudes as the theory itself. 

Although the characterization is somewhat dramatic, one 
could say that science software requirements are best 
understood as set of educated guesses embedded in a much 
larger network of guesses. There are no certainties, and  there 
is  no  way  to insulate your requirements against unexpected 
outside influences beyond the project team’s control. 
Indeed, scientists expect to  be occasionally jostled from 
previously comfortable conclusions, and a science software 
requirements engineer should have similar expectations. 

As discussed above, an instrument always obeys the laws of 
physics,  and it obeys explicitly only those physical  laws of 
which the designers were aware. The choice of instrument, 
the details of its design, the situation in  which it is placed, 
and the uses to which it is put are all the result of deliberate 
choices made by the scientist. Thus, an instrument, while 
patently an artifact of the physical world, is  always an 
expression of the preunderstanding of the scientist who  uses 
it. It  may  not  be regarded as independent of the theoretical 
understanding of the scientist responsible for it’s design and 
specification. 

The Hermeneutic Circle and Sofrware-The  hermeneutic 
circle becomes even more problematic in the area of 
software development. The case of the Total Ozone 
Mapping Spectrometer (TOMS) on  the  NIMBUS-7 
spacecraft illustrates the situation well. NIMBUS-7 launched 
in October 1978, and the TOMS began returning data in 
November of that year. The instrument returned data until 
the instrument finally failed in May 1993. 

The TOMS science team  was responsible for the software 
used to process TOMS data to produce ozone maps.  Based 
on then-current understanding of Antarctic ozone, the team 
put a trigger in their software to detect low ozone amounts, 
and to flag the data as defective. 

Although evidence of the ozone hole was present in TOMS 
data from 1979 onward, the team overlooked the presence of 
the hole until 1985 when a team  lead by Joseph Farman 
reported it. A reanalysis of the TOMS data revealed the full 
extent of the ozone hole, which Farman’s ground-based 
measurements had been unable to do, but nevertheless, the 
team  missed out on being able to claim the discovery of this 
important atmospheric feature. 

It is clear that the hermeneutic circle is a real and  important 
feature of the science software landscape. When considering 
the possible effects of the hermeneutic circle on a science 
software development project, it is essential that one does 
not attempt to find  ways  to bypass it altogether. As 
Heidegger asserts, “if  we see this circle as a vicious  one and 



look out for ways  of avoiding it, even if  we just sense it as 
an inevitable imperfection, then the art of understanding has 
been  misunderstood from the ground up.”[ 1 1 ,  p. 1941 

While it  remains  an essential part of any scientific activity to 
work  assiduously to uncover all of one’s hidden assumptions 
and prejudices, the hermeneutic circle precludes that one’s 
understanding  will ever be complete or totally objective. 
Current trends in the software industry towards “good 
enough” software implicitly recognize this  fact. However, 
even if one constructs a process (as we have) whereby 
requirements are determined to be “good enough”, even  then 
there remains  some uncertainty. How do you  know  they are 
good enough? Are  you telling yourself  what you  want to 
hear? 

Problems with Specification Languages-To address the 
problems of ambiguity inherent in natural languages, some 
authors” suggest  using a requirement specification 
language, or structured English, to express requirements. 
However, we find this approach to be fraught with 
difficulties, and find that the scientific process itself 
provides what  may  be  the  best available means of dealing 
with  the  issues of ambiguity. In our discussion of the latter 
point, we begin  to  show more clearly why  we believe the 
social aspects of science software requirements engineering 
are most important. 

The linguist  Noam  Chomsky posited a meta level of 
expression-simple, declarative sentences which,  through a 
set of well-defined rules could be transformed into  any 
possible expression. Indeed, some compiler systems are 
designed with exactly this model. Chomsky’s theory 
provides us with a prototypical basis for requirements 
specification languages. There are two key assumptions one 
must  make  to adopt this model: first, that there is a meaning 
independent of any particular expression, and second, that 
nothing is lost  in the translation. Post-modernist thinkers 
have  challenged  both of these notions. We find that the 
challenge has  been effective, at least in the case of science 
software requirements. 

A trial  use of structured English [ 121 was firmly rejected by 
the  customer  on the AES project. The resulting prose was 
found  to  be too much like reading computer code, which 
some  members of the project team, the project manager  and 
principle investigator in particular, found  virtually 
impossible to read. The same individuals are involved in the 
same capacity on the TES project, and the use of structured 
English was  not proposed for TES. 

In addition to problems of customer acceptance, we find 
other difficulties with specification languages on science 
software projects. In discussing the advantages of 
informality  Goguen [8] refers to the eficiency of language. 
By efficiency is meant the ability of natural language to have 

lo See, for example,  Hatley and Pirbhai [ 121. 

meaning  that is context dependent, and  to  have  multiple 
meanings simultaneously. While these are the very 
“problem” features specification languages are meant to 
solve, Goguen argues that it would  be difficult, and perhaps 
impossible, to communicate without the ambiguity  in  natural 
language. 

We believe that specification languages cannot completely 
solve the problems they set out to solve by virtue of the fact 
that  they are themselves constructed from natural languages. 
That they can never  be free from the supposed problems of 
natural language may  be demonstrated by an example” 
taken from Hatley and Pirbhai [ 121 (see figure 1) .  

The specification in this example would appear to  be clear, 
and unambiguous, but exactly what is a pulse? This word 
and the phrase “shaft rotation” illustrate the impossibility of 
constructing a specification language without reference to 
objects in the real world. But real-world objects have  names 
that are defined in terms of natural languages, and there is 
no  way to extricate them from that context. 

PSPEC 1; Measure Motion 

For each pulse of shaft rotation: 

add 1 to DISTANCE COUNT 
then set: 

DISTANCE = DISTANCE COUNT/ 
MILE COUNT 

I 

Figure 1 Example of Structured English 

One assumption of advocates of specification languages is 
the assumption that whatever ambiguities inherent in the 
natural language expression are artifacts of the natural 
language itself, and not the thought of the writer. 

Can a requirements language say what we mean? One of our 
top-level science requirements is to “. . .incorporate a flexible 
list of additional species.. .” The document does not  specify 
what “flexible” means, or exactly what “incorporate” 
means (incorporate into the code? a database? what?). 
Nevertheless, this requirement represents the  intent of the 
science team, and does not constitute a problem  for  the 
development team. Both the science team and the developers 
share an understanding of this requirement, despite its  lack 
of specificity. More importantly, both teams recognize that 
there remain some open issues as to exactly how  this 
requirement should be met, and further understand  the 
process by which the issues are to be resolved. We treat our 
requirements as item .f information, as Goguen [8] defines 
them:  “an  item of information  [is]  an interpretation of a 



configuration of signs for which a social group can  be  held 
accountable.” The social group here is the project team, 
comprising scientists and software developers. 

The efficiency of language is a key part of our ability to deal 
with imprecise knowledge. Attempting to remove the 
ambiguity  in the specification would prove to  be disruptive 
to  the  flow of work,  and if attempted as an exercise in  its 
own right  would likely meet with the derision of the science 
team. 

Advocates of the use of requirements languages may argue 
that  the important thing is the exercise of attempting to 
perform the translation. That is, it is the process of 
attempting the translation that produces the most important 
results in the form of improved understanding. Although this 
argument  has some merit, it is insufficient to justify such as 
approach in  our case. We must  make it clear that we do 
resolve the ambiguities. However, this effort is part of the 
science process rather than a separate exercise. 

Resolving  Ambiguities-Ambiguities are a common feature 
of our specifications. However, we do not  simply leave them 
be, and  permit the inevitable consequences to ensue. In the 
case cited above, the ambiguity is deliberate on the part of 
the science team. They do not  know enough about what  they 
really  need  to  be  more precise. 

The science team  and project team  members responsible for 
the particular subsystem the requirement pertains to  meet 
formally once a week,  and informally every day. These are 
explicitly the forum for resolving the ambiguity of the 
requirement. However, even in this context the focus is not 
on  how  to state the requirement more clearly (although this 
does occasionally occur), it is most typically in the context 
of discussing potential design solutions. 

Placing the requirements clarification process in this context 
helps  to  bring  the discussion closer to  the actual world of 
concern of the science team. Relative to the discussion 
above of boredom  and physiology, this is an example of  how 
the process is made a more integral part of the scientist’s 
work.  It is the job of the software engineers to recognize that 
the process is addressing ambiguities in requirements, and to 
modify the specifications accordingly. 

If the  ambiguities  in a natural language specification are due 
to the  ambiguities  in the understanding of the writer, then 
the  use  of specification languages can only help uncover 
their existence. But  in the instance of a science requirement, 
an  ambiguity  in a requirement often reflects a genuine lack 
of clear understanding of how the world  works. 

Is  the imposition of a specification language the best means 
of uncovering this lack of understanding? We believe not. 
Scientists have developed a highly sophisticated means of 
performing  this function. It does not  work perfectly, but the 
process of peer review, both formal and informal, is an 
effective means of discovering areas of  weak understanding. 

Since this process is already intrinsic to the practice of 
science, the salutary effect of specifications languages 
appears redundant. 

Software peer reviews-It is not completely satisfactory to 
rely on the peer review process of scientists alone. On TES, 
we extend  this process into the software development 
activity through  informal peer reviews of software work 
products. The science team routinely participates in these 
reviews. These reviews provide further social context for 
clarifying, reworking and understanding requirements. It  is 
this highly interactive exchange of ideas and interpretations 
that we believe gives the greatest value to the software peer 
review process. 

On the TES project we use the peer review process as  one 
technique to better understand science requirements. This 
technique is familiar ground to the scientist and represents a 
fairly common mechanism to attempt to better  understand 
science goals  and objectives by emphasizing what  is  known 
and  to expose areas of weak understanding. The key  to 
developing requirements during the peer review process is 
to  understand  that the science requirements themselves are 
evolving in parallel to the scientific research. Through peer 
reviews we embed the development of requirements with  the 
process of advancing the research by working collectively 
(scientist and software developer) to better understand  the 
goals and objectives of the science. 

So the process is not one of gained requirement content 
simply through the transcription of information, gathered 
and  written into itemized requirements. Rather, it  is  the 
process of frequent interaction using diagrams, drawings and 
words to express a science requirement in ways comfortable 
to both parties that help better define the requirements. 

If We Knew the Requirements, We’d  Be  Done-What turns 
out to be more problematic than uncovering areas of  weak 
understanding is the problem of managing  what  is  already 
known  to  be either poorly understood, or  altogether 
unknown. Scientists are usually quick to point  out  the  limits 
of their knowledge. Indeed, the notion of intellectual 
honesty requires that  they  make  this  known,  lest  they  appear 
to claim knowledge they do not have. 

In the scientific investigations we have been associated with, 
the science team is usually confronted by a bewildering 
array of unanswered questions, each vying for priority. 
There are always far more questions to be  answered  than 
there are scientists to answer them.  In challenging science 
projects, the science team often faces significant difficulties 
simply keeping track of what it must solve in order to 
progress scientifically, let alone write software requirements. 

From this perspective, the scientist may claim (and  many do) 
that if they  knew  what the requirements were, the problem 
would  be solved, but solving the problem is what  they  have 
been  asked to do!  The situation is not  as circular as  it may 



appear, but  it underscores the unique difficulty of specifying 
requirements for a science project. In a sense, the 
requirements represent knowledge of the solution, and all of 
the  programming  and testing that go on in system 
development are merely a means for verifying the 
requirements! 

We regret that we have not  yet found an effective means of 
managing  the  “known  unknowns”  in our systems. 

A Comment on Emerging Social Approaches to 
Requirement Engineering 

Despite our enthusiasm for social approaches to 
requirements engineering problems, we are less certain 
about  the  promise of attempts to apply ethnographical 
techniques  to requirements engineering. For reasons that  will 
become clearer further on, the use of ethnography, as 
reported in [13] seems to create more problems than it 
solves. Our  basic objection is that the injection of an 
ethnographer into the requirements engineering process 
merely introduces another interdisciplinary communications 
problem, which is one of the principle problems we find  in 
science software development projects. We are also 
concerned about the reception this technique would  meet 
with if applied  to a science project. A physical scientist may 
have  difficulty accepting the involvement of a social 
scientist (even a proxy), and  may  be prejudiced against the 
methods  and conclusions of the ethnographer in  such a way 
as to negate the potential benefits of the approach. 

4. ROLE OF SCIENTIST-DEVELOPED CODES 

As discussed above, many scientists are accustomed to 
writing  their  own codes in support of their individual 
activities. Although  this  can present some difficulties to a 
software engineering team, certain opportunities arise as 
well. We begin  with a discussion of  how scientists use 
models  to document their knowledge, the problems 
associated with those models, and the emerging role of 
software  as a form of publication. 

Nature of scientific models-Scientists model their 
understanding of the physical world in many  ways. Some 
means of expression are more-or less universal, such as 
equations, and  x-y plots. Others are domain-specific, such as 
the rules for drawing cladistic relations in tree form, 
conventions for visually representing molecules and notation 
used  to express group-theoretical statements. Others are 
simply  ad hoc, such  as  the figures used to express the 
geometry of a physical arrangement, or  the sources and sinks 
of carbon in the biogeochemical cycles. 

The writer of a science software requirements specification 
is  presented  with several difficulties. First, there is the 
bewildering  array of modeling methods used  by scientists. 
Second is the lack of a clear and unambiguous means of 
linking  all of the artifacts a scientist will present as reference 
documentation. Typically, the ability to reliably negotiate 

the maze of equations, papers and data in a particular field 
comprises a portion of the training a scientist receives when 
they earn their Ph.D. Clearly, it is unreasonable to expect 
that a software engineer would retrace all of these steps 
simply  in order to write a specification. 

The solution we have found to  be  most effective is  to 
employ people with scientific training, preferably at the 
Masters or doctoral level, to serve as  de facto interpreters. 
These are not the same people who  write the software 
requirements, that job is reserved for experienced software 
engineers. 

The key aspect of their role is that, while possessing the 
intellectual tools to understand the science, they are not 
personally committed to performing the science, and 
therefore are capable of standing apart from the  science 
activity in a way the science team members cannot. They  are 
able to answer questions about the software requirements 
that the science team cannot, without  necessarily  having  all 
of the knowledge needed to answer a scientists question 
about the science. 

Another important aspect of the use of models  in expressing 
scientific theories, which  must eventually find their way into 
a software specification, is their nature as models. Recall 
that the dualistic concept of truth is based  on  mental 
representations and their correspondence to observables. 
This correspondence is taken for granted in science. On  the 
other hand, the lack of objects appropriate for (especially 
visual)  modeling is a well-known problem in  software 
engineering. Modeling has established its  value  in  software 
engineering despite its overt lack of direct correspondence 
to  anything  in the “real world”. It might  even  be  said  that  the 
methodologies associated with modeling techniques arose in 
response to this deficiency. For the developer of science 
software, the critical question is what is the relationship of 
the model a software engineer builds of the software and  the 
models the scientist builds to express their understanding of 
the world? 

Sofnyare as Publication-One way to begin  to  answer  this 
question is to explore the evolving role software plays in 
science. With the emergence of networked  computer 
systems, scientists have enjoyed an ever-increasing ability to 
communicate and share data. The role of the Internet in  the 
development of string theory is a case in point, where  the 
importance of informal electronic communications 
challenges the relevance of traditional peer-reviewed 
journals. Within NASA’s Earth Observing System (EOS) 
program, some scientists have begun  to recognize that 
making data available on the internet is in some ways 
equivalent to publishing a paper. 

Although we have  not  heard it explicitly discussed in 
scientific circles, we expect it is only a matter of time  before 
scientists recognize the status of a software program as an 
executable expression of scientific theory. In the context of 



the present discussion, it is productive to assume this 
viewpoint. 

Doing  so changes the nature of the question of the 
relationship between scientific and software models. The 
software program as model is introduced as a third form of 
expression that  both frustrates traditional software 
engineering approaches, while clarifying in a way  no other 
approach can, the intent of the scientist. 

On the TES project, we regard software developed by 
scientists  as prototype code. It is generally given in 
conjunction with other, more traditional expositions of the 
underlying scientific theory, and is typically developed by 
the scientist in order to  verify that the theory  works 
correctly. One issue for the software developer is which 
form of expression takes priority? The textual description of 
the  theory,  with its associated figures and equations, is 
generally  the form of expression used as the basis for 
discussion among the science team, and  usually 
communicates  the underlying ideas in more general fashion. 
However, it is  only the code form that  has  successfully 
negotiated  the translation process into software, and  only 
this form that  has  been tested empirically. 

When the scientific problems are complex, as they are in the 
case of the TES retrieval algorithm, it is insufficient to 
provide a purely theoretical justification for a particular 
analysis technique. There are simply too many subtleties to 
permit  anything but an empirical demonstration of the 
correctness of the underlying theory to justify its acceptance. 

This situation raises the immediate concern of software 
engineers. What the scientist wants,  with justification, is the 
ability  to  write the code before the system is designed. 

On the TES project, we have embarked on a long algorithm 
prototyping effort. From the scientists’ perspective, the 
purpose of this effort is to develop the processing 
algorithms. In the terms used in this paper, we  would say 
they are developing the observational theory  that  will 
underlie  the data the team delivers to the larger scientific 
community. Prior to its assuming a status of being an 
observational theory, it must  be  shown to be a satisfactory 
explanatory theory  with regard to observed measurements of 
the  type  TES  will  make. It is this process of transition from 
explanatory status to observational status, and the possibility 
of it operating in reverse, that is the source of so much 
difficulty  in the system development. 

From  the perspective of the software developers, the 
purpose of the prototype is  to establish an understanding of 
what  the code must do, i.e., the requirements. But is it 
satisfactory  to regard a prototype code as  an expression of 
requirements? Even if it were true, in  what  way  could a 
prototype code be interpreted as a requirement? 

It  would  seem  easy to say that the problem may be  solved by 
regarding  the prototype code as a by-product of a 

requirements definition activity, with the software engineers 
taking  what  they have learned from it and codifying it in a 
requirements document. However, this is not sufficient. 
Even after a long and in-depth prototyping activity  such as 
TES’, the software engineers may not be in possession of 
sufficient understanding of the domain to  write an 
acceptable specification. 

Given the ongoing nature of the scientific process, the 
prototype can never  be regarded as complete until it has 
been definitively replaced with another code. That means 
that interest in  the performance and functionality of the 
prototype will continue throughout the lifetime of the 
project, and  possibly even afterwards. This is especially true 
if the deliverable code does not contain all of the 
functionality included  in the prototype. A prototype code 
may contain a number of alternative methods, and false 
starts that later turn out to be of interest. 

A prototype code is also of interest in  it role as arbiter of 
truth. A code that is taken as validating a scientific theory 
then becomes a “reference code” against which other codes 
are measured. If another code cannot come up  with the same 
answer, or prove why the original code  is wrong,  then it is 
regarded as wrong. The prototype code developed by the 
TES project is expected to play  this role. 

How can a prototype code be considered an expression of 
software requirements? We have  taken the approach that a 
prototype can be considered part of a software requirement 
only insofar as it is used as a reference code, i.e.,  as a source 
of results that  any subsequent code must  match.  Even  here 
one must  be careful to specify the exact test cases to  be 
used, as it is possible for two codes to get identical results 
on one case, and diverge on another. The code itself  is 
maintained under configuration control, and  is  provided  to 
the software developer as a detailed description of how  the 
requirement might  be satisfied, but the particular solution is 
not  levied as a requirement. 

On the TES project, the prototyping is treated as a major 
part of the requirements definition process. An entire 
segment of our workflow is devoted to  managing  the 
prototyping process, and controlling the flow of  new 
requirements form the prototype to the production code. The 
science team controls the prototyping process almost 
entirely. Individual science team members propose new 
ways  of processing the data. Following a process outside the 
software realm, they decide which algorithms merit 
inclusion in the prototype. At this point the engineering staff 
become involved by estimating the resources necessary to 
implement the changes, and  the  teams jointly schedule the 
new work. Once completed, the science team evaluates the 
changes. If they are found to be acceptable the whole 
process begins over again, this time in the context of the 
production system development. In this new context, the 
newly validated science algorithm is treated as a new 
requirement. 



The prototype code becomes the reference code for testing, 
as  well  as a detailed example of how the requirement might 
be satisfied. As part of the science evaluation process, the 
scientist who initiated the process must provide written 
documentation of the algorithm as well as specifications for 
test cases and test results. These are entered into 
configuration control along with the prototype code. The 
whole is then associated together in one change package in 
the configuration management system. 

5. CONCLUSIONS 

Science software development presents unique challenges to 
the  software engineering profession. These challenges derive 
from  the  basic epistemological problems of science. 
Working scientists are aware of these problems, but  rarely 
attempt to formulate them explicitly in terms of 
epistemology. We have presented some philosophical and 
cognitive information that provides a more explicit means of 
describing the challenges of acquiring knowledge. In this 
light, the problems of science software development are cast 
in terms  that emphasize the importance of team structure, 
domain  understanding  and the development of common 
interpretations of requirements versus a concentration on 
how  formally  to express those requirements. 
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